Agriculture, VetMed, and Model Organisms


Gene Expression Profiling: A Better Understanding of Health and Disease

Differential gene expression profiling of messenger RNA allows researchers to understand the molecular impact of exposure to different environmental stimuli, diseases, vaccines, and pharmaceuticals.  The advent of genomics has revolutionized research in the fields of agriculture, veterinary medicine, and model organisms. Having sequenced the DNA of various crops, domestic animals, and non-human species, scientists are beginning to understand the underlying pathways and processes that define the biology of these different organisms. 

There are a multitude of applications for gene expression profiling in agriculture, veterinary medicine and model organism research.  Examples include:

  • Agriculture: Studying the gene expression of various crops under stress has led to the development of hardier and drought tolerant strains that produce higher yields.
  • Veterinary Medicine: Elucidating the pathogenesis of common ailments such as cancer or kidney disease allows researchers to develop better treatments for these conditions in companion animals and humans. Understanding host/pathogen interactions has led to better vaccination strategies for domestic animals.
  • Model Organisms: Pathway analysis of genes involved in tissue and organ growth helps build a framework for evolution and developmental biology while pharmaceutical studies lead to the discovery of novel drug targets and a better understanding of mechanism of action.

Direct Digital Detection Maximizes Reproducibility and Productivity

nCounter® Gene Expression assays reduce time to data with a simple workflow of less than 15 minutes hands-on time and streamlined analysis, generating results in under 24 hours.  The platform is ideal for processing higher numbers of samples commonly seen in studies with plants, animals, and model organisms; minimal hands-on time maximizes productivity in the lab.

  • Profile up to 800 genes from a single sample
  • Flexible content allows you to select the organism/genes of your choice
  • Compatible with total RNA and crude lysate
  • No amplification, RT or library prep with as little as 25 ng input material
  • No technical replicates required due to direct, digital counting
  • Sample multiplexing with PlexSet™ reagents allows you to profile up to 96 genes in 96 samples with one run, generating up to 9,216 data points
  • Lysate-compatible protocol for processing multiple samples more efficiently
Flexible Solutions
Custom Assay Design
Common Species for Design Requests
Flexible Solutions

Flexible Solutions

NanoString offers a variety of custom solutions for gene expression profiling and analysis:

Custom Assay Design

Custom Assay Design

Assay content is designed by NanoString bioinformaticians free of charge. Probes for up to 800 transcript targets can be designed for any species of interest with a known sequence. Contact us for more information or to discuss your design with our bioinformatics team.

Common Species for Design Requests

Common Species for Design Requests

nCounter probe sets have been designed for over 300 species, and there have been more than 6,000 probe designs made to date.

Related Resources

View All Resources
Flyer Custom Solutions Model Organisms – Flyer
Flyer Custom Solutions AgBio – Flyer
Flyer Custom Solutions VetMed – Flyer
Flyer Custom Solutions Neuropathic Pain – Flyer
Webinar Gene expression profiling and analysis of miRNA as a measure of immunocompetence in cattle

View All Publications


Identification of Group A Streptococcus Genes Directly Regulated by CsrRS and Novel Intermediate Regulators.

Adaptation of group A Streptococcus (GAS) to its human host is mediated by two-component systems that transduce external stimuli to regulate bacterial physiology. Among such systems, CsrRS (also known as CovRS) is the most extensively characterized for its role in regulating approximately 10% of the GAS genome, including several virulence genes.

Characterization of local and peripheral immune system in pregnant and non-pregnant ewes.

Modulation of the immune system is known to be important for successful pregnancy but how immune function might differ between the lymph nodes draining the reproductive tract and peripheral lymph nodes is not well understood. Additionally, if immune system changes in response to the presence of an embryo during early pregnancy, and if this response differs in local versus peripheral immune tissue, has not been well characterized.

Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing.

Pigs are a valuable human biomedical model and an important protein source supporting global food security. The transcriptomes of peripheral blood immune cells in pigs were defined at the bulk cell-type and single cell levels.