Skip to main content

Advertisement

Log in

Increased tumor-infiltrating lymphocyte density is associated with favorable outcomes in a comparative study of canine histiocytic sarcoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Histiocytic sarcoma (HS) is a rare and aggressive tumor in humans with no universally agreed standard of care therapy. Spontaneous canine HS exhibits increased prevalence in specific breeds, shares key genetic and biologic similarities with the human disease, and occurs in an immunocompetent setting. Previous data allude to the immunogenicity of this disease in both species, highlighting the potential for their successful treatment with immunotherapy. Quantification of CD3 tumor-infiltrating lymphocytes (TIL) in five cases of human HS revealed variable intra-tumoral T cell infiltration. Due to the paucity of human cases and lack of current model systems in which to appraise associations between anti-tumor immunity and treatment-outcome in HS, we analyzed clinical data and quantified TIL in 18 dogs that were previously diagnosed with localized HS and treated with curative-intent tumor resection with or without adjuvant chemotherapy. As in humans, assessment of TIL in biopsy tissues taken at diagnosis reveal a spectrum of immunologically “cold” to “hot” tumors. Importantly, we show that increased CD3 and granzyme B TIL are positively associated with favorable outcomes in dogs following surgical resection. NanoString transcriptional analyses revealed increased T cell and antigen presentation transcripts associated with prolonged survival in canine pulmonary HS and a decreased tumor immunogenicity profile associated with shorter survivals in splenic HS. Based on these findings, we propose that spontaneous canine HS is an accessible and powerful novel model to study tumor immunology and will provide a unique platform to preclinically appraise the efficacy and tolerability of anti-cancer immunotherapies for HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takahashi E, Nakamura S (2013) Histiocytic sarcoma : an updated literature review based on the 2008 WHO classification. J Clin Exp Hematop 53(1):1–8

    Article  PubMed  Google Scholar 

  2. Kommalapati A, Tella SH, Durkin M, Go RS, Goyal G (2018) Histiocytic sarcoma: a population-based analysis of incidence, demographic disparities, and long-term outcomes. Blood 131(2):265–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hornick JL, Jaffe ES, Fletcher CDM (2004) Extranodal histiocytic sarcoma: clinicopathologic analysis of 14 cases of a rare epithelioid malignancy. Am J Surg Pathol 28(9):1133–1144

    Article  PubMed  Google Scholar 

  4. Pileri SA, Grogan TM, Harris NL, Banks P, Campo E, Chan JKC et al (2002) Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 41(1):1–29

    Article  CAS  PubMed  Google Scholar 

  5. Ansari J, Naqash AR, Munker R, El-Osta H, Master S, Cotelingam JD et al (2016) Histiocytic sarcoma as a secondary malignancy: pathobiology, diagnosis, and treatment. Eur J Haematol 97(1):9–16

    Article  PubMed  Google Scholar 

  6. Tsujimura H, Miyaki T, Yamada S, Sugawara T, Ise M, Iwata S et al (2014) Successful treatment of histiocytic sarcoma with induction chemotherapy consisting of dose-escalated CHOP plus etoposide and upfront consolidation auto-transplantation. Int J Hematol 100(5):507–510

    Article  CAS  PubMed  Google Scholar 

  7. Gounder MM, Solit DB, Tap WD (2018) Trametinib in histiocytic sarcoma with an activating MAP2K1 (MEK1) mutation. N Engl J Med 378(20):1945–1947

    Article  PubMed  PubMed Central  Google Scholar 

  8. Atherton MJ, Morris JS, McDermott MR, Lichty BD (2016) Cancer immunology and canine malignant melanoma: a comparative review. Vet Immunol Immunopathol 169:15–26

    Article  CAS  PubMed  Google Scholar 

  9. LeBlanc AK, Breen M, Choyke P, Dewhirst M, Fan TM, Gustafson DL et al (2016) Perspectives from man’s best friend: National Academy of Medicine’s Workshop on Comparative Oncology. Sci Transl Med 8(324):324ps5-324ps5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Atherton MJ, Lenz JA, Mason NJ (2020) Sarcomas - a barren immunological wasteland or field of opportunity for immunotherapy? Vet Comp Oncol 18:447–470

    Article  CAS  PubMed  Google Scholar 

  11. Affolter VK, Moore PF (2002) Localized and Disseminated Histiocytic Sarcoma of Dendritic Cell Origin in Dogs. Vet Pathol 39(1):74–83

    Article  CAS  PubMed  Google Scholar 

  12. Lenz JA, Furrow E, Craig LE, Cannon CM (2017) Histiocytic sarcoma in 14 miniature schnauzers - a new breed predisposition? J Small Anim Pract 58(8):461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abadie J, Hédan B, Cadieu E, De Brito C, Devauchelle P, Bourgain C et al (2009) Epidemiology, pathology, and genetics of histiocytic sarcoma in the Bernese mountain dog breed. J Hered 100(Suppl 1):S19-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dobson J, Hoather T, McKinley TJ, Wood JLN (2009) Mortality in a cohort of flat-coated retrievers in the UK. Vet Comp Oncol 7(2):115–121

    Article  CAS  PubMed  Google Scholar 

  15. Fulmer AK, Mauldin GE (2007) Canine histiocytic neoplasia: An overview. Can Vet J 48(10):1041–1050

    PubMed  PubMed Central  Google Scholar 

  16. Gustafson DL, Duval DL, Regan DP, Thamm DH (2018) Canine sarcomas as a surrogate for the human disease. Pharmacol Ther 188:80–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skorupski KA, Clifford CA, Paoloni MC, Lara-Garcia A, Barber L, Kent MS et al (2007) CCNU for the treatment of dogs with histiocytic sarcoma. J Vet Intern Med 21(1):121–126

    Article  PubMed  Google Scholar 

  18. Skorupski KA, Rodriguez CO, Krick EL, Clifford CA, Ward R, Kent MS (2009) Long-term survival in dogs with localized histiocytic sarcoma treated with CCNU as an adjuvant to local therapy*. Vet Comp Oncol 7(2):139–144

    Article  CAS  PubMed  Google Scholar 

  19. Hedan B, Thomas R, Motsinger-Reif A, Abadie J, Andre C, Cullen J et al (2011) Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior. BMC Cancer 26(11):201

    Article  Google Scholar 

  20. Hédan B, Rault M, Abadie J, Ulvé R, Botherel N, Devauchelle P et al (2020) PTPN11 mutations in canine and human disseminated histiocytic sarcoma. Int J Cancer 147(6):1657–1665

    Article  PubMed  CAS  Google Scholar 

  21. Takada M, Hix JML, Corner S, Schall PZ, Kiupel M, Yuzbasiyan-Gurkan V (2018) Targeting MEK in a translational model of histiocytic sarcoma. Mol Cancer Ther 17(11):2439–2450

    Article  CAS  PubMed  Google Scholar 

  22. Tarone L, Barutello G, Iussich S, Giacobino D, Quaglino E, Buracco P et al (2019) Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy. Cancer Immunol Immunother 68(11):1839–1853

    Article  PubMed  Google Scholar 

  23. Fesnak AD, Levine BL, June CH (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964

    Article  CAS  PubMed  Google Scholar 

  25. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  26. Skala SL, Lucas DR, Dewar R (2018) Histiocytic sarcoma: review, discussion of transformation from B-cell lymphoma, and differential diagnosis. Arch Pathol Lab Med 142(11):1322–1329

    Article  CAS  PubMed  Google Scholar 

  27. Picarsic JL, Chikwava K (2018) Foundations in diagnostic pathology, hematopathology. 3rd edn, Disorders of Histiocytes, Elsevier, pp 567–616.e4

  28. Miranda RN, Medeiros LJ (2018) Diagnostic pathology: lymph nodes and extranodal lymphomas. 2nd edn, Histiocytic Sarcoma, Elsevier, pp 812–821

  29. Bose S, Robles J, McCall CM, Lagoo AS, Wechsler DS, Schooler GR et al (2019) Favorable response to nivolumab in a young adult patient with metastatic histiocytic sarcoma. Pediatr Blood Cancer. 66(1):e27491

    Article  PubMed  Google Scholar 

  30. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20(19):5064–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gatalica Z, Bilalovic N, Palazzo JP, Bender RP, Swensen J, Millis SZ et al (2015) Disseminated histiocytoses biomarkers beyond BRAFV600E: frequent expression of PD-L1. Oncotarget 6(23):19819–19825

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marcinowska A, Constantino-Casas F, Williams T, Hoather T, Blacklaws B, Dobson J (2017) T lymphocytes in histiocytic sarcomas of flat-coated retriever dogs. Vet Pathol 54(4):605–610

    Article  CAS  PubMed  Google Scholar 

  34. Kato Y, Murakami M, Hoshino Y, Mori T, Maruo K, Hirata A et al (2013) The class A macrophage scavenger receptor CD204 is a useful immunohistochemical marker of canine histiocytic sarcoma. J Comp Pathol 148(2–3):188–196

    Article  CAS  PubMed  Google Scholar 

  35. Pierezan F, Mansell J, Ambrus A, Rodrigues HA (2014) Immunohistochemical expression of ionized calcium binding adapter molecule 1 in cutaneous histiocytic proliferative, neoplastic and inflammatory disorders of dogs and cats. J Comp Pathol 151(4):347–351

    Article  CAS  PubMed  Google Scholar 

  36. Frazier JP, Bertout JA, Kerwin WS, Moreno-Gonzalez A, Casalini JR, Grenley MO et al (2017) Multidrug analyses in patients distinguish efficacious cancer agents based on both tumor cell killing and immunomodulation. Cancer Res 77(11):2869–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martínez-Lostao L, Anel A, Pardo J (2015) How do cytotoxic lymphocytes kill cancer cells? Clin Cancer Res 21(22):5047–5056

    Article  PubMed  CAS  Google Scholar 

  38. Facciabene A, Motz GT, Coukos G (2012) T regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res 72(9):2162–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shang B, Liu Y, Jiang S, Liu Y (2015) Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 14(5):15179

    Article  CAS  Google Scholar 

  40. Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348(6230):74–80

    Article  CAS  PubMed  Google Scholar 

  41. Dersh D, Hollý J, Yewdell JW (2021) A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 21(2):116–128

    Article  CAS  PubMed  Google Scholar 

  42. Afshar-Kharghan V (2017) The role of the complement system in cancer. J Clin Invest 127(3):780–789

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X et al (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 17(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Sun HH, Fletcher CDM, Hornick JL, Morgan EA, Freeman GJ et al (2016) Expression of programmed cell death 1 ligands (PD-L1 and PD-L2) in histiocytic and dendritic cell disorders. Am J Surg Pathol 40(4):443–453

    Article  PubMed  Google Scholar 

  46. Hartley G, Faulhaber E, Caldwell A, Coy J, Kurihara J, Guth A et al (2017) Immune regulation of canine tumour and macrophage PD-L1 expression. Vet Comp Oncol 15(2):534–549

    Article  CAS  PubMed  Google Scholar 

  47. Tagawa M, Maekawa N, Konnai S, Takagi S (2016) Evaluation of costimulatory molecules in peripheral blood lymphocytes of canine patients with histiocytic sarcoma. PLoS ONE. 11(2):e0150030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C et al (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232(2):199–209

    Article  CAS  PubMed  Google Scholar 

  49. Panjwani MK, Atherton MJ, MaloneyHuss MA, Haran KP, Xiong A, Gupta M et al (2020) Establishing a model system for evaluating CAR T cell therapy using dogs with spontaneous diffuse large B cell lymphoma. Oncoimmunology 9(1):1676615

    Article  PubMed  Google Scholar 

  50. Dow S (2019) A role for dogs in advancing cancer immunotherapy research. Front Immunol 10:

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Leslie King for manuscript review and editing.

Funding

This study was conducted using internal funds provided to Jennifer A Lenz, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine; internal funds to Robert G Maki Department of Medicine, Perelman School of Medicine, University of Pennsylvania and NCI funding supporting Matthew J Atherton (K08CA252619). The Penn Vet Comparative Pathology Core is supported by the Abramson Cancer Center Support Grant (P30 CA016520). The scanner used for whole slide imaging and the image analysis software was supported by a NIH Shared Instrumentation Grant (S10 OD023465-01A1).

Author information

Authors and Affiliations

Authors

Contributions

JAL and MJA were responsible for conceptualization. JAL, CAA, ER and MJA performed methodology. JAL, CAA, VC, KL, SR, NSK, PJZ, RGM, ACD and MJA performed formal analysis and investigation. JAL, CAA and MJA were responsible for writing—original draft preparation. JAL, CAA, NSK, ACD, ER and MJA were responsible for writing—review and editing. JAL, RGM and MJA performed funding acquisition. JAL, CAA, KL, PJZ, RGM, ACD, ER and MJA collected resources. JAL and MJA performed supervision.

Corresponding authors

Correspondence to Jennifer A. Lenz or Matthew J. Atherton.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Précis: Human and canine histiocytic sarcoma biopsies were analyzed for T cell infiltrates. Increased density of tumor-infiltrating lymphocytes was associated with improved outcomes following curative-intent treatment.

Supplementary Information

Below is the link to the electronic supplementary material.

CD3, GZB and FOXP3 TIL densities for 18 dogs with spontaneous HS.

Supplementary file1 (PDF 138 KB)

262_2021_3033_MOESM2_ESM.pdf

CD3 densities in human and canine HS. Data mean ± SD, p-values calculated using two-tailed Mann-Whitney U tests. Histiocytic sarcoma, HS.

Supplementary file2 (PDF 101 KB)

Supplementary file3 (PDF 106 KB)

Supplementary file4 (PDF 133 KB)

Supplementary file5 (PDF 84 KB)

Supplementary file6 (PDF 130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenz, J.A., Assenmacher, CA., Costa, V. et al. Increased tumor-infiltrating lymphocyte density is associated with favorable outcomes in a comparative study of canine histiocytic sarcoma. Cancer Immunol Immunother 71, 807–818 (2022). https://doi.org/10.1007/s00262-021-03033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03033-z

Keywords

Navigation