nCounter® miRNA Expression Analysis in Plasma and Serum Samples

Introduction

nCounter® miRNA Assays allow users to rapidly and efficiently profile hundreds of miRNAs simultaneously. When appropriate sample handling and data analysis guidelines are implemented, nCounter miRNA assays can generate reliable data from plasma and serum samples. This tech note will define the current challenges associated with miRNA studies in blood plasma and serum samples, point out steps in the processing of collected blood which can have an impact on sample quality and elucidate the ways in which variables in sample preparation can be controlled to produce reliable data using nCounter miRNA Assays. There are two broad categories of considerations that must be accounted for when performing miRNA analysis of serum and plasma samples: 1) sample contaminants that can confound results and 2) the generally low abundance of miRNA in plasma and serum. TABLE 1 provides a brief synopsis of key considerations and recommendations which are described in detail throughout this tech note.

TABLE 1: Key considerations and recommendations.

<table>
<thead>
<tr>
<th>Consideration</th>
<th>Guidance for Plasma</th>
<th>Guidance for Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Collection</td>
<td>• EDTA tubes recommended</td>
<td>• Gel separation recommended</td>
</tr>
<tr>
<td>Tube</td>
<td>• Citrate tubes acceptable</td>
<td>• Gel-free separation acceptable</td>
</tr>
<tr>
<td>Hemolysis</td>
<td>Minimize hemolysis, inspect each sample for hemolysis prior to RNA extraction</td>
<td></td>
</tr>
<tr>
<td>Cellular Contamination</td>
<td>Evaluate results to determine if elevated levels of cellular miRNAs (mir-451, miR-16, miR-25, miR-106, miR-7g) or the housekeeping gene, B2M, is elevated.</td>
<td>Minimize cellular contamination by using gel separation tubes</td>
</tr>
<tr>
<td>Low miRNA Abundance</td>
<td>Initial sample volume Add a 400 μL equivalent* of initial sample to the hybridization.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-extraction Spike-Ins Spike-in synthetic targets to control for variability in RNA extraction efficiency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Post-Extraction Enrichment Concentrate eluted miRNA with a size exclusion filter (~3 kDa MW cutoff). This step also minimizes contamination.</td>
<td></td>
</tr>
</tbody>
</table>

*In this tech note, an “equivalent” is defined as the volume of final, purified RNA that would correspond to an initial volume of plasma or serum. For example, if a RNA extraction was performed on 500 μL of plasma via an extraction method with 80% yield and half of the eluted material were used in the hybridization the input to the hyb would be a 200 μL equivalent (500 μL x 0.8 x 0.5 = 200 μL).

Background

There are many considerations that researchers should be aware of prior to undertaking sample collection and isolation of miRNAs for any downstream miRNA profiling technology (Becker N & Lockwood CM, 2013). Whole blood is a complex tissue containing red blood cells, white blood cells, platelets, macrophages, and trace numbers of displaced cells, such as circulating tumor cells. Plasma and serum are the cell-free portions of blood and thereby contain very little nucleic acid material. Indeed, NanoString’s 100ng total RNA recommendation for standard miRNA profiling of tissues and cells assumes an RNA profile similar to that observed in most tissues, i.e., about 90% of the RNA is ribosomal, 9-10% is mRNA and less than 1% is small RNA. Samples such as serum/plasma should be devoid of rRNA and mRNA, thereby reducing the overall amount of total RNA. The quantity of RNA extracted from plasma and serum is often below threshold amounts required for reliable information from standard RNA quality control methods and quantitation methods, such as absorbance (OD) measurements or the Agilent Bioanalyzer. It is therefore difficult to appropriately QC and thus assure that samples meet recommended purity guidelines and are free of chaotropic salts/phenol that can inhibit the ligation reaction. Furthermore, plasma and serum samples contain a high concentration of nucleases. These nucleases ensure that very little RNA will be present in cell-free blood samples, making extraction of measurable volumes of miRNA from plasma and serum technically challenging. Herein, we provide some guidance on overcoming the challenges of low sample input and enzyme inhibition when utilizing the nCounter System.

Molecules That Count®
Translational Research • Gene Expression • miRNA Expression • Copy Number Variation • Single Cell Expression
Blood Collection Guidance

One of the major factors to consider prior to embarking on any miRNA profiling study using serum and plasma samples is the blood collection method of choice, including the specific type of collection tube utilized. Generally, blood samples are collected as serum or plasma. Serum, in which the blood is allowed to coagulate before centrifugal separation, is essentially blood with all of the cells and clotting factors removed. Plasma is treated with an anticoagulant additive and whole cells are centrifugally separated, leaving the clotting factors present, but inhibited (reversibly or irreversibly, depending on the anticoagulant). Laboratory anticoagulants, such as EDTA, citrate, and oxalate, act by chelating calcium. Another common anticoagulant, heparin, works via antithrombin activation.

Both plasma and serum can produce robust results in the nCounter miRNA Assay, and using either EDTA (K2 or K3) or citrate as the plasma anticoagulant is acceptable. While the overall pattern of expression for most miRNAs is the same, small discrepancies in relative expression levels can be seen with theoretically very similar tube types for some miRNAs, a phenomenon that has been previously observed (Kroh EM, et al., 2010). It should be noted that citrate plasma tubes in general produce a lower number of overall miRNA counts compared to EDTA. NanoString recommends that data generated from different collection tubes not be compared directly (TABLE 2); this is true not just for citrate plasma, but also serum and EDTA plasma (see FIGURE 1).

FIGURE 1: Log₂ counts for 52 individual miRNAs are displayed for three sample collection tube types, K2 EDTA plasma (orange), K3 EDTA plasma (gray), Citrate plasma (red). When citrate counts are normalized to align with K2 EDTA counts (pink), there is significant overlap of data generated by the three types of tubes. miRNAs are listed across the x-axis and Log₂ counts are plotted along the y-axis. RNA was prepared from fractionated plasma. In general, Citrate plasma tubes produce lower counts overall than other collection methods.

TABLE 2: The number of miRNAs detected above background and average counts for a variety serum and plasma collection tubes.

<table>
<thead>
<tr>
<th>Collection Tube</th>
<th>miRNAs above b/g</th>
<th>Avg Counts for miRNAs above b/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2EDTA</td>
<td>144</td>
<td>2,531</td>
</tr>
<tr>
<td>K3EDTA</td>
<td>142</td>
<td>2,281</td>
</tr>
<tr>
<td>Citrate</td>
<td>59</td>
<td>585</td>
</tr>
<tr>
<td>Serum, no gel</td>
<td>35</td>
<td>398</td>
</tr>
<tr>
<td>Serum, gel</td>
<td>54</td>
<td>441</td>
</tr>
</tbody>
</table>

TABLE 2: The number of miRNAs detected above background and average counts for a variety serum and plasma collection tubes.
Addition of Synthetic Spike-Ins

To control for variances in the starting material as well as the efficiency of the downstream total RNA extraction step, NanoString recommends the use of synthetic control RNA spike-ins. All NanoString miRNA CodeSets are “spike in ready” in that they contain probes for a number of recommended spike-in miRNAs (for example, the Human v2 miRNA Panel contains 5 spike in probes: ath-miR-159a, cel-miR-248, cel-miR-254, osa-miR-414, osa-miR-442). Spike-in oligos can be ordered from IDT Technologies or other oligo vendors (unmodified, HPLC or gel purified), aliquoted and stored at -20 at 1-5 pg/μL.

Following the lysis procedures specified by the RNA extraction protocol, we recommend adding 5 μL spike-in oligo mixture containing an optimized amount of synthetic RNA oligos (BOX 1). Please consult with support@nanostring.com for appropriate guidance.

BOX 1: Optimal Spike-in Concentration

NanoString recommends the use of small RNA spike-ins as means of assessing miRNA extraction efficiency from biofluids. Adding a known amount of a measurable target molecule allows for downstream normalization of data to account for any differences in purification efficiency observed from sample to sample. In order to serve as a monitor of this process, small RNA spike-ins must be added to a sample after lysis, but prior to extraction/purification.

NanoString recommends that 15–30 attomoles of a spike-in molecule be present in the final hybridization reaction with the nCounter miRNA CodeSet. As nCounter miRNA detection does not involve amplification, the amount of spike-in oligo needed to be added to a lysed sample must be carefully controlled and take into account the following information:

1. The elution volume of the purified sample
2. The fraction of the eluted sample profiled with the nCounter miRNA Expression Assay

For example:

If 500 μL of plasma is expected to be lysed for the extraction protocol and the protocol results in a final elution volume of 15 μL, of which 3 μL will be assayed in a nCounter miRNA Expression Assay, then the number of spike-in molecules that should be added to the sample is 1000 attomoles and can be derived by the following formula:

\[
\text{Elution Volume} ÷ \text{Amount of sample added to nCounter miRNA Sample Preparation} \times \text{Post-ligation dilution factor}^* \times \text{Target number of molecules in a hybridization}
\]

\[
15 \mu\text{L} / 3 \mu\text{L} \times 10 \times 20 \text{ attomoles} = 1000 \text{ attomoles}
\]

This means that 1000 attomoles (or 5 μL of a 200pM solution) should be added to the 500 μL of plasma to be extracted after addition of a lysis buffer. NanoString does not recommend direct addition of a spike-in to a sample prior to addition of lysis buffer as degradation of the spike-in may occur.

* This accounts for a 1:10 dilution that is part of the nCounter miRNA analysis protocol
The spike in controls will help normalize for extraction efficiency by correcting for the variance between samples due to slight variations in the extraction of miRNA following addition of lysis buffer to the sample, but will not normalize for variation due to input amounts of miRNA which can vary due to differences in starting amount or biological differences.

FIGURE 3 below displays the improved coefficient of variation (CV) between replicate samples when a spike-in normalization step is performed. Un-normalized samples exhibit a CV of 20%, normalization of the samples improves this measure to 5%.

FIGURE 3: Spike Normalization Reduces Percent CV from 20% to 5%. Use of miRNA spike-ins for normalization improves Coefficient of Variation between replicate samples. Samples 1-5 are EDTA plasma spiked with synthetic miR-10b and miR-122, split into 5 aliquots and extracted in parallel. The x-axis represents the different samples. Total counts for hsa-miR-451 are plotted on the y-axis.

Total RNA Extraction and Isolation

The nCounter miRNA Assays are compatible with miRNA extracted from a variety of extraction methods/kits. Generally, 400 μL of plasma or serum should be enough to produce significant counts, but robust detection of some miRNAs may require larger volumes. There may be a diminishing return with increased sample volume when samples are prepared on commercial miRNA extraction columns, likely due to finite binding capacity of the column matrix. Contact your miRNA extraction kit manufacturer for column specific binding capacity and sample volume guidelines.

Commercial miRNA extraction mini columns are an easy way to reliably obtain clean miRNA samples from plasma and serum, typically by first removing proteins in an organic phase separation, and then binding and washing nucleic acids on a silica-based column. As stated previously, circulating miRNAs are relatively low in concentration and extraction yields frequently approach the limit of UV/vis spectrophotometric detection, therefore the typical cautions regarding sample cleanup using mini columns (see nCounter miRNA Assay Manual) are of even greater importance in reliably producing clean miRNA. The primary issue with mini columns is carryover from the extraction process contaminating the samples, which can both complicate spectrophotometric concentration determination and inhibit ligation in the NanoString miRNA assay. Some ways to avoid contamination are:

- a. Perform the organic phase separation carefully (if there is one in the kit you choose) and avoid phenol carryover. Phenol has a spectrophotometric profile similar to nucleic acids, making it difficult to determine the concentration of the sample, or whether the extraction was successful at all.
- b. Wash the column thoroughly, and then completely remove the wash buffers before eluting the RNA. Guanidinium carryover from the binding buffer will inhibit assay ligation, and can also obfuscate spectrophotometric concentration determinations. Adding 2 extra washes with the last wash buffer or 80% ethanol will reduce this carryover significantly.
- c. Elute in a larger volume (e.g., 100–200 μL) and then reduce the volume to 20–25 μL; this can be accomplished by either an ethanol/sodium acetate precipitation or using a size-exclusion filter with a small pore size (~3 kDa MW cutoff). This will affect maximum recovery from the extraction column and then both concentrate the sample to increase count data and wash away the buffer residues that might inhibit detection.

As with blood collection tube choice, an important factor for collecting comparable data is consistency in the choice of RNA extraction kit. Different extraction kits have varying efficiency at extracting different miRNAs, often resulting in variances in miRNA expression profiles (Pritchard CC. et al., 2012, Blondal T. et al., 2012, Podol'ska A. et al., 2012, Jacob NK et al., 2013). NanoString has observed that counts measured for individual miRNAs can differ between extraction kits (data not shown). Therefore we recommend utilizing a single extraction kit and buffer throughout a study where direct comparisons of miRNA counts are intended.
Data Analysis and Normalization

All data analysis and normalization can be performed using the nSolver™ Software Analysis (complimentary download from NanoString Technologies). There are several different approaches to normalization selectable in nSolver, in which specific miRNA counts are normalized to a selection of stably expressed miRNAs based on CVs calculated across all experimental samples or with the use of the Spike-in controls.

1. nSolver can calculate the Geometric mean of the top 100 miRNAs in all samples, effectively normalizing relative to total miRNA present (recommended).

2. nSolver can calculate the Geometric mean of user selected miRNA(s) normalizing all samples relative to the selected miRNA(s). Requires miRNA(s) with constant expression – not widely used due to lack of widely recognized housekeeping miRNAs.

Contact support@nanostring.com for further guidance on data analysis.

Blood Plasma/Serum miRNA Workflow

Collect Sample

• Generally, 400 μL plasma or serum per sample is enough, but detection of some miRNA may require larger volumes.

• EDTA (K2 or K3) or citrate tubes are acceptable (keep collection tube the same throughout the experiment). Citrate tubes containing SPS or heparin tubes should not be used, as they interfere with downstream processing.

• To minimize cellular contamination after serum collection:
 a. Allow blood to coagulate for an hour at room temperature (RT),
 b. Spin 10,000g for 10 min at RT,
 c. Collect serum and snap freeze. Store at -80°C.

 NOTE: If the sample is pink/red, hemolysis occurred during collection; the miRNA fraction will likely contain miRNAs from blood cells.

Plan Spike-in Addition (Optional)

1. Order small RNA control spike-ins from IDT or another oligo vendor (unmodified, HPLC, or PAGE purified).

 NOTE: The spike-ins allow recognition of exogenous miRNA targets. Only one or two spike-ins should be used for the sample.

2. Aliquot and store at -20°C at 1–5 pg/μL.

3. Calculate concentration of spike-ins required for 5 μL input:

 • Elution volume:
 (final volume from clean and collect column*)/Amount of sample added to miRNA sample prep (always 3 μL) x Post-ligation dilution factor (always 10) x Target number of molecules in a hybridization (15–30 attomoles) = number of attomoles per spike-in per 5 μL input.

 * This accounts for a 1:10 dilution that is part of the nCounter miRNA analysis protocol

 • Contact NanoString Support (support@nanostring.com) for spike-in calculation guidance

RNA Extraction

• Use at least 400 μL plasma per sample

• Keep extraction method/kit consistent throughout experiment

• If using spike-ins, add 5 μL 5 minutes after adding the lysis buffer

• Avoid phenol carryover

• If using minicolumns, wash column thoroughly and then completely remove wash buffers before eluting the RNA. Adding 2 extra washes with the last wash buffer or 80% ethanol will reduce guanidinium carryover

• Elute in larger volume (100–200 μL)

• Reduce volume to 20–25 μL using ethanol/sodium acetate precipitation or size-exclusion filter with small pore size (~3kDa MW cutoff). Contact NanoString Support (support@nanostring.com) for column recommendations.
Conclusion

The identification of stable circulating miRNAs in various disease states offers the potential for discovery of novel biomarkers and new biological insights. As outlined herein, important considerations regarding the low-abundance of miRNA in plasma/serum and potential contaminants associated with these sample types must be addressed to ensure reliable results. Using the guidelines outlined in this tech note, reproducible and relevant data can be obtained using the nCounter miRNA assays.

References

- Becker N and Lockwood CM “Pre-analytical variables in miRNA analysis”. Clin Biochem; [Epub ahead of print, 2013].